Lesson 6.

The mileage running problem

The problem

Professor May B. Wright needs to fly from Baltimore (BWI) to Los Angeles (LAX) to attend a conference. She thinks
this would be the perfect opportunity to accumulate some frequent flyer miles on American Airlines (AA), where she
already has Platinum status.

Looking into flights on AA, she sees that every itinerary from BWI to LAX costs roughly the same. She has a full day
to spare for travel, so she wants to know: which sequence of AA domestic flights starting at BWI and ending at LAX
over the course of one day will allow her to accumulate the most miles?

e Yes, people actually do this. This is known as mileage running.

o Apparently, this has become harder to do in recent years.
o A recent article from the New York Times.

o An older article from Wired.

Modeling the problem
e Suppose we have a database of every AA domestic flight on a given day.

e In particular, for each flight, we have:

o the flight number

o the origin airport

o the destination airport

o the departure time at the origin airport

o the arrival time at the destination airport

o the distance traveled in miles

e How can we formulate Professor Wright’s problem as a shortest path problem?

pandas (the package, not the animals)

e In the same folder as this notebook, there is a file called aa_domestic_flights.csv with the database described
above.

.csv stands for comma-separated values.

We can view .csv files in Excel - let’s see what’s in this file. Cut to Excel. ..

e How can we use this data in Python? With pandas.

pandas is a Python package for data analysis.

o Its especially useful for cleaning and manipulating datasets.

SA367 - Mathematical Models for Decision Making - Spring 2017 - Uhan 1

https://www.nytimes.com/2014/09/14/upshot/the-fadeout-of-the-mileage-run.html
https://www.wired.com/2007/07/mileage-runner/

e pandas does a lot of stuff — here are a few resources:

o Here is the official documentation for pandas.

o Chris Albon’s notes are also a good resource on how to get things done with pandas (look in the Data
Wrangling section).

e In this lesson, we'll use pandas in a very basic way to help us set up the shortest path problem we formulated
above.

¢ To install pandas, open a WinPython Command Prompt and type
pip install pandas
e pip might tell you that pandas is already installed. If not, it should go ahead and install it for you.
e To use pandas, we first need to import it, like this:
In [2]: import pandas as pd

e A pandas DataFrame is just a two-dimensional table, with rows and columns.
e We can use the read_csv() function in pandas to read aa_domestic_flights.csv into a DataFrame called df, like
this:
In [3]: # Read csv file into a DataFrame

Designate departure and arrival time columns as dates
df = pd.read_csv('aa_domestic_flights.csv', parse_dates=['DEP_TIME', 'ARR_TIME'])

o By default, read_csv() assumes the first row of the csv file contains the names of each column.

e The parse_dates argument tells read_csv() which columns correspond to dates, so that we can perform date-
specific calculations on these columns later.

e Here is the official documentation for read_csv().

e It’s a good idea to take a quick look at the DataFrame read_csv() creates, just in case something went wrong.

e To examine the first 5 rows of a DataFrame, we can use the .head() method:

In [4]: # Print the first 5 rows of df

df.head()
Out[4]: FLIGHT ORIGIN DEST DEP_TIME ARR_TIME DISTANCE
1-B0S-JFK BOS JFK 2016-09-01 06:00:00 2016-09-01 07:15:00 187.0
40-B0S-0RD BOS ORD 2016-09-01 19:12:00 2016-09-01 22:02:00 867.0

147-B0S-LAX BOS LAX 2016-09-01 15:15:00 2016-09-01 21:45:00 2611.0
197-B0S-0RD BOS ORD 2016-09-01 15:30:00 2016-09-01 18:24:00 867.0
198-B0S-JFK BOS JFK 2016-09-01 13:10:00 2016-09-01 14:31:00 187.0

A W N =

e Another useful method is .describe().
e By default, .describe() only provides summary statistics for the columns with numeric data.

e To get summary statistics for all the columns, include the argument include="all", like this:

2 Lesson 6. The mileage running problem

http://pandas.pydata.org/pandas-docs/stable/index.html
http://chrisalbon.com
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html

In [5]: # Get summary statistics for all columns in df
df.describe(include="all")

Out[5]:
count
unique
top
freq
first
last
mean
std

count
unique
top
freq
first
last
mean
std
min

5
0
5
max

N

o°

w

o°

~

o°

e A column by itself is called a Series.

e You can select the Series DEST of the DataFrame df like this:

df["DEST"]

FLIGHT ORIGIN

2607
2607

32-LAX-JFK

D
2607

986
645
83
507
868
1272
3784

1
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN

ISTANCE
.000000
NaN
NaN
NaN
NaN
NaN
.709628
.910443
.000000
.000000
.000000
.000000
.000000

2607
94
DFW
408
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN

DEST
2607
94
DFW
407
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN

DEP_TIME

2607

643

2016-09-01 07:00:00
43

2016-09-01 02:15:00
2016-09-02 03:50:00
NaN

NaN

NaN

NaN

NaN

NaN

NaN

e So, to print the Series DEST, we could write:

In [6]: # Print the DEST column

print(df["DEST"])

JFK
ORD
LAX
ORD
JFK
JFK
ORD
LAX
MIA
DFW
PHX
ORD

O oo~NOOUDS WNREO

==
[<]

ARR_TIME \

2607

1046

2016-09-01 16:45:00
12

2016-09-01 06:01:00
2016-09-02 09:33:00
NaN

NaN

NaN

NaN

NaN

NaN

NaN

SA367 - Mathematical Models for Decision Making - Spring 2017 - Uhan

12 MIA

13 DFW
14 MIA
15 LAX
16 DFW
17 ORD
18 ORD
19 ORD
20 MIA
21 ORD
22 LAX
23 MIA
24 JFK
25 DFW
26 DFW
27 ORD
28 PHX
29 MIA
2577 PHL
2578 CLT
2579 CLT
2580 CLT
2581 CLT
2582 CLT
2583 CLT
2584 CLT
2585 CLT
2586 CLT
2587 CLT
2588 CLT
2589 CLT
2590 CLT
2591 CLT
2592 CLT
2593 CLT
2594 CLT
2595 CLT
2596 CLT
2597 CLT
2598 CLT
2599 PHX
2600 PHX
2601 PHX
2602 DFW
2603 DFW
2604 DFW
2605 PHX
2606 PHX

Name: DEST, dtype: object

Setting up the shortest path problem in networkx

e Now that we can access the flight database in Python, we can use its contents to setup the shortest path problem
we formulated above.

e First, let’s import networkx and bellmanford so we can use them:

4 Lesson 6. The mileage running problem

In [7]: import networkx as nx
import bellmanford as bf

Creating a list of flights
e It will be useful to create a variable flights containing a list of all the flights.

e What part of the dataset contains this information?
We need to look at the FLIGHT column of the dataset.

e From the .describe() output above, we see that the flights in df ["FLIGHT"] are unique.

e We can convert the Series df["FLIGHT"] to a list with the function list().

o Then we can use the list methods we learned about earlier, such as .append(), if necessary.

In [8]: # Take the FLIGHT column from df, convert it to a list
flights = list(df["FLIGHT"])

e It’s a good idea to make sure nothing funny happened — let’s inspect the variable flights we just created:

In [9]: # Print flights
print("Flights: {0}".format(flights))

Flights: ['1-B0S-JFK', '40-BOS-ORD', '147-B0OS-LAX', '197-B0S-ORD', '198-B0S-JFK', '85-B0S-JFK', '252-B0S-ORD', '333-B0OS-L/

e You might want to click on the left of the output above — this will collapse the output so it doesn’t take over
your browser window.

e Let’s also make sure we have the right number of flights in the variable flights:

In [10]: print("Number of flights: {0}".format(len(flights)))

Number of flights: 2607

Creating a list of airports
o It will also be useful to have a variable airports containing a list of all the airports.

e What part of the dataset contains this information?
We need to look at the 0RIGIN and DEST columns of the dataset.

e We can create the list airports like this:

SA367 - Mathematical Models for Decision Making - Spring 2017 - Uhan 5

In [11]: # Convert the ORIGIN and DEST columns from df into sets,
take their union, convert to a list
airports = list(set(df["ORIGIN"]) | set(df["DEST"]))

e Um... what does this do??
e Lets try a smaller example and look at what’s going on step-by-step.

e Pretend that A and B defined below are the 0RIG and DEST columns from df

In [12]: # Pretend that A and B are the ORIG and DEST columns from df
A= ['BWI', 'BWI', 'ORD', 'ORD']
B = ['LAX', 'ORD', 'SFO', 'LAX']

e In Python, a set is an unordered collection of unique elements, just like the usual mathematical definition.
e set(A) takes all entries A and converts it into a set. This eliminates all duplicates within A.

e Same goes for set(B).

In [13]: # Convert A and B into sets, print them out
print(set(A))
print(set(B))

{'BWI', 'ORD'}
{'SFO', 'ORD', 'LAX'}

e The | operator takes the union of the sets, like this:

In [14]: # Take the union of set(A) and set(B), print it out
print(set(A) | set(B))

{'BWI', 'SFO', 'ORD', 'LAX'}

o This is almost what we want: we have a list of all the airports, but...

e Sets are similar to lists, but have their own methods. We can turn the set into a list with the function list(),
like this:

In [15]: # Print out the union of set(A) and set(B), converted to a list
print(list(set(A) | set(B)))

['BWI', 'SFO', 'ORD', 'LAX']

o See how that works? That’s why airports defined above contains a list of all the airports in our dataset.

e Let’s make sure everything looks OK with airports:

6 Lesson 6. The mileage running problem

In [16]: # Print list of airports
print('Airports: {0}'.format(airports))

Print number of airports
print('Number of airports: {0}'.format(len(airports)))

Airports: ['MFE', 'SLC', 'SNA', 'STX', 'DEN', 'FAT', 'MIA', 'SFO', 'HNL', 'MCO', 'MDT', 'FLL', 'STL', 'IAD', 'TPA', 'MEM'

Number of airports: 94

Adding nodes with attributes

e Now we're ready to build the shortest path graph. Let’s start with an empty directed graph:

In [17]: # Create empty NetworkX digraph
G = nx.DiGraph()

e Next, let’s create a “start” and “end” node.

In [18]: # Create start and end nodes
G.add_node("start")
G.add_node("end")

e Now, we need to add a node for each flight, or each row of our database.

e We can quickly iterate through the rows of a DataFrame using the .itertuples() method:

for row in df.itertuples():
Put some code here
row.COLUMN_NAME = value of column COLUMN_NAME in the current row

e So we can add a node for each flight like this:

In [19]: # Add a node for each flight
for row in df.itertuples():
G.add_node(row.FLIGHT, origin=row.ORIGIN, dest=row.DEST, dep_time=row.DEP_TIME, arr_time=row.ARR_TIME,
distance=row.DISTANCE)

e Wait —
G.add_node(row.FLIGHT)

adds a node whose name is the value of row.FLIGHT. What is all the other stuff?

e Remember in the last lesson when we added the “length” attribute to each edge? Like this?
G.add_edge(1l, 2, length=9)

e We can add attributes to nodes as well.
e The code above adds attributes called origin, dest, dep_time, arr_time, and distance to each node.
o This will be handy later.

o To access a particular attribute of a node, we write something like this:

SA367 - Mathematical Models for Decision Making - Spring 2017 - Uhan 7

In [20]: # print the departure time of flight "1-B0S-JFK"
print(G.node["1-B0S-JFK"]["dep_time"])

2016-09-01 06:00:00

e The .number_of_nodes() method applied to a networkx graph — well, you can guess what it does. Or, you can

just try it out:

In [21]: # Print number of nodes in G
print(G.number_of_nodes())

2609

Adding edges
e Now we can check every pair of flight nodes, and check if we need to add an edge between them.
o Remember the length of these edges is the negative of the distance of the first flight.
e To add or subtract times, we need to use pd.to_timedelta() — here is the documentation.

o For example, to subtract 30 minutes, we would write

some_time_variable - pd.to_timedelta(30, unit="m")

o This might seem awkward, but if you think about it, working with dates and time is awkward — you need to
keep track of different (non-base-10) units.

In [22]: # Iterate through every pair of flight nodes
for first in flights:
for second in flights:

If the first flight arrives where the second flight departs...
if (G.node[first]["dest"] == G.node[second]["origin"]):

And if the first flight arrives 45 minutes before the second flight leaves,

add an edge from the first flight to the second

if (G.node[first]["arr_time"] + pd.to_timedelta(45, unit="m") < G.node[second]["dep_time"]):
G.add_edge(first, second, length=-G.node[first]["distance"])

e Finally, we need to add edges:
o from the start node to all flights departing from BWI, and
o from all flights arriving at LAX to the end node.

In [23]: # Iterate through all flights
for flight in flights:

If the flight departs from BWI,

add an edge from start to this flight

if G.node[flight]["origin"] == "BWI":
G.add_edge("start", flight, length=0)

If the flight arrives at LAX,

8 Lesson 6. The mileage running problem

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.to_timedelta.html

add an edge from this flight to end
if G.node[flight]["dest"] == "LAX":
G.add_edge(flight, "end", length=-G.node[flight]["distance"])

e Similar to G.number_of_nodes (), we can perform a sanity check with our work with G.number_of_edges().

In [24]: # Print the number of edges in G
print(G.number_of_edges())

158335

Solving the shortest path problem, interpreting the output

e Now that we have our directed graph set up, we can solve for the shortest path from the start node to the end
node just like we did in the last lesson:

In [25]: # Solve the shortest path problem using Bellman-Ford
length, nodes, negative_cycle = bf.bellman_ford(G, source="start", target="end", weight="length")

Print output from Bellman-Ford

print("Negative cycle? {0}".format(negative_cycle))
print("Shortest path length: {0}".format(length))
print("Shortest path: {0}".format(nodes))

Negative cycle? False
Shortest path length: -8005.0
Shortest path: ['start', '1817-BWI-CLT', '658-CLT-LAS', '1584-LAS-PHX', '694-PHX-HNL', '298-HNL-LAX', 'end']

e What does the output tell us about how to solve Professor Wright’s problem?

o The shortest path length gives us the negative of the maximum possible total distance Professor Wright can
travel on a feasible sequence of flights from BWI to LAX, which in this case, is 8005 miles.

e The nodes in the shortest path give the sequence of flights from BWI to LAX with the maximum possible total
distance, which in this case is:

1. Flight 1817, BWI-CLT
Flight 658, CLT-LAS
Flight 1584, LAS-PHX
Flight 694, PHX-HNL
Flight 298, HNL-LAX

ok we N

SA367 - Mathematical Models for Decision Making - Spring 2017 - Uhan 9

On your own...

Suppose Professor Wright wants to find the longest itinerary from IAD (Washington DC - Dulles) to SAN (San Diego)
instead.

In the cell below, write the code that sets up and solves the shortest path formulation for her problem from start to
finish.

In the cell after, describe in words what the output from the Bellman-Ford algorithm tells you about how to solve
Professor Wright’s problem.

In [26]: # Import packages
import pandas as pd
import networkx as nx
import bellmanford as bf

Read csv file into a DataFrame
Designate departure and arrival time columns as dates
df = pd.read_csv('aa_domestic flights.csv', parse_dates=['DEP_TIME', 'ARR_TIME'])

Create empty NetworkX digraph
G = nx.DiGraph()

Create start and end nodes
G.add_node("start")
G.add_node("end")

Add a node for each flight
for row in df.itertuples():
G.add_node(row.FLIGHT, origin=row.ORIGIN, dest=row.DEST, dep_time=row.DEP_TIME, arr_time=row.ARR_TIME,
distance=row.DISTANCE)

Iterate through every pair of flight nodes
for first in flights:
for second in flights:

If the first flight arrives where the second flight departs...
if (G.node[first]["dest"] == G.node[second]["origin"]):

And if the first flight arrives 45 minutes before the second flight leaves,

add an edge from the first flight to the second

if (G.node[first]["arr_time"] + pd.to_timedelta(45, unit="m") < G.node[second]["dep_time"]):
G.add_edge(first, second, length=-G.node[first]["distance"])

Iterate through all flights
for flight in flights:

If the flight departs from IAD,

add an edge from start to this flight

if G.node[flight]["origin"] == "IAD":
G.add_edge("start", flight, length=0)

If the flight arrives at SAN,
add an edge from this flight to end
if G.node[flight]["dest"] == "SAN":
G.add_edge(flight, "end", length=-G.node[flight]["distance"])

Solve the shortest path problem using Bellman-Ford
length, nodes, negative_cycle = bf.bellman_ford(G, source="start", target="end", weight="length")

10 Lesson 6. The mileage running problem

Print output from Bellman-Ford

print("Negative cycle? {0}".format(negative_cycle))
print("Shortest path length: {0}".format(length))
print("Shortest path: {0}".format(nodes))

Negative cycle? False
Shortest path length: -6005.0
Shortest path: ['start', '2636-IAD-LAX', '2503-LAX-ORD', '2375-ORD-DFW', '435-DFW-SAN', 'end']

o The shortest path length gives us the negative of the maximum possible total distance Professor Wright can
travel on a feasible sequence of flights from IAD to SAN, which in this case, is 6005 miles.

e The nodes in the shortest path give the sequence of flights from IAD to SAN with the maximum possible total
distance, which in this case is:

1. Flight 2636, IAD-LAX
2. Flight 2503, LAX-ORD
3. Flight 2375, ORD-DFW
4. Flight 435, DFW-SAN

SA367 - Mathematical Models for Decision Making - Spring 2017 - Uhan n

	The problem
	Modeling the problem
	pandas (the package, not the animals)
	Setting up the shortest path problem in networkx
	Creating a list of flights
	Creating a list of airports
	Adding nodes with attributes
	Adding edges

	Solving the shortest path problem, interpreting the output
	On your own…

